Distributed Optimization and Learning for Applications in Power and Energy Systems

主讲人:丁正桃
讲座时间:2026-01-15 13:30:00
讲座地点:临港校区学术楼305
主办单位:人工智能学部
主讲人简介:丁正桃本科毕业于清华大学,之后留学英国曼彻斯特大学取得硕士和博士学位。在新加坡工作十年后,丁教授返回英国曼彻斯特大学任教,后来担任电力电子工程系控制系统教授;先后担任中英联合控制实验室主任,控制与机器人研究室主任,以及控制,机器人与通讯分部主任。他已出版专著5部,主编出版爱思唯尔《系统与控制工程百科全书》,发表学术论文400余篇。最近,丁教授在中国华电电力科学研究院从事新能源综合优化应用以及沙戈荒新能源大基地等相关研究。丁正桃教授长期从事控制理论、人工智能以及新能源系统的科研、教学和相关行政事务,其主要研究方向包括分布优化及控制、人工智能算法、网络连接动态系统的协同控制、非线性自适应控制理论,新能源系统的控制与优化等。 丁教授现任《无人机与自动驾驶车辆》主编、《前沿》系列期刊非线性控制领域首席编辑,同时担任《科学报告》《控制理论与技术》《无人系统》等十余本期刊编委。他是IEEE非线性系统与控制技术委员会、IEEE智能控制技术委员会、IFAC自适应与学习系统技术委员会委员以及中国自动化协会控制理论专委会委员,并于2021当选英国国家数据科学与人工智能研究院——艾伦·图灵研究院会士,2025年底入选IEEE会士(Fellow of IEEE)。
讲座内容:

There are many challenges and opportunities in areas such as net zero, internet of things, big data, machine learning, and smart grid, particularly concerning distributed learning, optimization, decision-making, and control. New energy resources are distributed in nature, and there are demands in distributed control and resource optimization for energy and power systems. Recent advances in distributed networks along with the development of complex and large-scale subsystems have significantly incentivized coordination and cooperation over multi-agent systems. Acknowledging the role of network communication in the decision-making, many distributed algorithms have been developed for distributed machine learning, optimization, and differential games, where certain control perspectives, such as consensus, adaptation, and time-varying topologies or parameters, are intrinsically aligned. Motivated by the interplay among optimization, control and learning, a revisit of typical control methods may offer deeper insights into how these algorithms can be refined in terms of their design and convergence. This talk will cover recent activities carried out by the speaker’s group in distributed algorithms, rooted in control theory. Topics include distributed time-varying optimization of multi-agent systems, cooperative and competitive machine learning over networks, with a particular focus on resource allocation, load forecasting, and day-ahead bidding in smart energy and power systems, federated learning algorithms focusing on data heterogeneity and their application on load forecasting and load profile identification.